Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Transfusion ; 63(5): 1050-1059, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37036040

RESUMO

BACKGROUND: Cryopreservation and thawing protocols represent key factors for the efficacy of cellular therapy products, such as hematopoietic stem cells (HSCs). While the HSC cryopreservation has already been standardized, the thawing procedures have been poorly studied. This study aimed to evaluate the thawing and washing protocol of cord blood (CB) derived HSCs or the HPC(CB), by selecting the optimal thawing solution and determining CD34+ cells' stability over time. STUDY DESIGN AND METHODS: Seven cryopreserved CB products were thawed, washed, and resuspended in three different solutions (10% Dextran40 in NaCl equally prepared with 5% human albumin; 5% human albumin in PBS/EDTA; and normal saline) and stored at 4°C (±2°C). Mononuclear cell (MNC) count, CD45+/CD34+ cell enumeration, and cell viability were tested at 0, 1, 2, 4, 6, 8, 12, 24, 36, and 48 h. The protocol with the selected solution was further validated on additional 10 CB samples. The above parameters and the colony-forming unit (CFU) assay were analyzed at time points 0, 2, 4, 6, and 8 h. RESULTS AND DISCUSSION: The results showed that the 5% human albumin was the most suitable thawing solution. MNCs were stable up to 4 h (p = 0.009), viable CD45+ cells were unstable even at 2 h (p = 0.013), and viable CD34+ cells were stable until 6 h (p = 0.019). The CFU assay proved the proliferative potential up to 8 h, although significantly decreased after 4 h (p = 0.013), and correlated with the viable CD34+ cell counts. We demonstrated that the post-thawed and washed HPC(CB) using 5% human albumin is stable for up to 4 h.


Assuntos
Sangue Fetal , Células-Tronco Hematopoéticas , Humanos , Antígenos CD34 , Contagem de Leucócitos , Criopreservação/métodos , Albumina Sérica Humana , Albuminas , Sobrevivência Celular
3.
J Transl Med ; 20(1): 502, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329474

RESUMO

BACKGROUND: The genetic architecture underlying Familial Hypercholesterolemia (FH) in Middle Eastern Arabs is yet to be fully described, and approaches to assess this from population-wide biobanks are important for public health planning and personalized medicine. METHODS: We evaluate the pilot phase cohort (n = 6,140 adults) of the Qatar Biobank (QBB) for FH using the Dutch Lipid Clinic Network (DLCN) criteria, followed by an in-depth characterization of all genetic alleles in known dominant (LDLR, APOB, and PCSK9) and recessive (LDLRAP1, ABCG5, ABCG8, and LIPA) FH-causing genes derived from whole-genome sequencing (WGS). We also investigate the utility of a globally established 12-SNP polygenic risk score to predict FH individuals in this cohort with Arab ancestry. RESULTS: Using DLCN criteria, we identify eight (0.1%) 'definite', 41 (0.7%) 'probable' and 334 (5.4%) 'possible' FH individuals, estimating a prevalence of 'definite or probable' FH in the Qatari cohort of ~ 1:125. We identify ten previously known pathogenic single-nucleotide variants (SNVs) and 14 putatively novel SNVs, as well as one novel copy number variant in PCSK9. Further, despite the modest sample size, we identify one homozygote for a known pathogenic variant (ABCG8, p. Gly574Arg, global MAF = 4.49E-05) associated with Sitosterolemia 2. Finally, calculation of polygenic risk scores found that individuals with 'definite or probable' FH have a significantly higher LDL-C SNP score than 'unlikely' individuals (p = 0.0003), demonstrating its utility in Arab populations. CONCLUSION: We design and implement a standardized approach to phenotyping a population biobank for FH risk followed by systematically identifying known variants and assessing putative novel variants contributing to FH burden in Qatar. Our results motivate similar studies in population-level biobanks - especially those with globally under-represented ancestries - and highlight the importance of genetic screening programs for early detection and management of individuals with high FH risk in health systems.


Assuntos
Hiperlipoproteinemia Tipo II , Pró-Proteína Convertase 9 , Adulto , Humanos , Pró-Proteína Convertase 9/genética , Bancos de Espécimes Biológicos , LDL-Colesterol , Fenótipo , Hiperlipoproteinemia Tipo II/complicações , Receptores de LDL , Mutação
4.
Biomedicines ; 10(2)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35203487

RESUMO

Vitamin D inadequacy appears to be on the rise globally, and it has been linked to an increased risk of osteoporosis, as well as metabolic, cardiovascular, and autoimmune diseases. Vitamin D concentrations are partially determined by genetic factors. Specific single nucleotide polymorphisms (SNPs) in genes involved in vitamin D transport, metabolism, or binding have been found to be associated with its serum concentration, and these SNPs differ among ethnicities. Vitamin D has also been suggested to be a regulator of the gut microbiota and vitamin D deficiency as the possible cause of gut microbial dysbiosis and inflammation. This pilot study aims to fill the gap in our understanding of the prevalence, cause, and implications of vitamin D inadequacy in a pediatric population residing in Qatar. Blood and fecal samples were collected from healthy subjects aged 4-14 years. Blood was used to measure serum metabolite of vitamin D, 25-hydroxycholecalciferol 25(OH)D. To evaluate the composition of the gut microbiota, fecal samples were subjected to 16S rRNA gene sequencing. High levels of vitamin D deficiency/insufficiency were observed in our cohort with 97% of the subjects falling into the inadequate category (with serum 25(OH)D < 75 nmol/L). The CT genotype in rs12512631, an SNP in the GC gene, was associated with low serum levels of vitamin D (ANOVA, p = 0.0356) and was abundant in deficient compared to non-deficient subjects. Overall gut microbial community structure was significantly different between the deficient (D) and non-deficient (ND) groups (Bray Curtis dissimilarity p = 0.049), with deficient subjects also displaying reduced gut microbial diversity. Significant differences were observed among the two major gut phyla, Firmicutes (F) and Bacteroidetes (B), where deficient subjects displayed a higher B/F ratio (p = 0.0097) compared to ND. Vitamin D deficient children also demonstrated gut enterotypes dominated by the genus Prevotella as opposed to Bacteroides. Our findings suggest that pediatric vitamin D inadequacy significantly impacts the gut microbiota. We also highlight the importance of considering host genetics and baseline gut microbiome composition in interpreting the clinical outcomes related to vitamin D deficiency as well as designing better personalized strategies for therapeutic interventions.

5.
Front Microbiol ; 12: 772736, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956135

RESUMO

Background: Many studies have linked dysbiosis of the gut microbiome to the development of cardiovascular diseases (CVD). However, studies assessing the association between the salivary microbiome and CVD risk on a large cohort remain sparse. This study aims to identify whether a predictive salivary microbiome signature is associated with a high risk of developing CVD in the Qatari population. Methods: Saliva samples from 2,974 Qatar Genome Project (QGP) participants were collected from Qatar Biobank (QBB). Based on the CVD score, subjects were classified into low-risk (LR < 10) (n = 2491), moderate-risk (MR = 10-20) (n = 320) and high-risk (HR > 30) (n = 163). To assess the salivary microbiome (SM) composition, 16S-rDNA libraries were sequenced and analyzed using QIIME-pipeline. Machine Learning (ML) strategies were used to identify SM-based predictors of CVD risk. Results: Firmicutes and Bacteroidetes were the predominant phyla among all the subjects included. Linear Discriminant Analysis Effect Size (LEfSe) analysis revealed that Clostridiaceae and Capnocytophaga were the most significantly abundant genera in the LR group, while Lactobacillus and Rothia were significantly abundant in the HR group. ML based prediction models revealed that Desulfobulbus, Prevotella, and Tissierellaceae were the common predictors of increased risk to CVD. Conclusion: This study identified significant differences in the SM composition in HR and LR CVD subjects. This is the first study to apply ML-based prediction modeling using the SM to predict CVD in an Arab population. More studies are required to better understand the mechanisms of how those microbes contribute to CVD.

6.
J Clin Immunol ; 40(6): 807-819, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32572726

RESUMO

Down syndrome (DS) is characterized by the occurrence of three copies of human chromosome 21 (HSA21). HSA21 contains a cluster of four interferon receptor (IFN-R) genes: IFNAR1, IFNAR2, IFNGR2, and IL10RB. DS patients often develop mucocutaneous infections and autoimmune diseases, mimicking patients with heterozygous gain-of-function (GOF) STAT1 mutations, which enhance cellular responses to three types of interferon (IFN). A gene dosage effect at these four loci may contribute to the infectious and autoimmune manifestations observed in individuals with DS. We report high levels of IFN-αR1, IFN-αR2, and IFN-γR2 expression on the surface of monocytes and EBV-transformed-B (EBV-B) cells from studying 45 DS patients. Total and phosphorylated STAT1 (STAT1 and pSTAT1) levels were constitutively high in unstimulated and IFN-α- and IFN-γ-stimulated monocytes from DS patients but lower than those in patients with GOF STAT1 mutations. Following stimulation with IFN-α or -γ, but not with IL-6 or IL-21, pSTAT1 and IFN-γ activation factor (GAF) DNA-binding activities were significantly higher in the EBV-B cells of DS patients than in controls. These responses resemble the dysregulated responses observed in patients with STAT1 GOF mutations. Concentrations of plasma type I IFNs were high in 12% of the DS patients tested (1.8% in the healthy controls). Levels of type I IFNs, IFN-Rs, and STAT1 were similar in DS patients with and without recurrent skin infections. We performed a genome-wide transcriptomic analysis based on principal component analysis and interferon modules on circulating monocytes. We found that DS monocytes had levels of both IFN-α- and IFN-γ-inducible ISGs intermediate to those of monocytes from healthy controls and from patients with GOF STAT1 mutations. Unlike patients with GOF STAT1 mutations, patients with DS had normal circulating Th17 counts and a high proportion of terminally differentiated CD8+ T cells with low levels of STAT1 expression. We conclude a mild interferonopathy in Down syndrome leads to an incomplete penetrance at both cellular and clinical level, which is not correlate with recurrent skin bacterial or fungal infections. The constitutive upregulation of type I and type II IFN-R, at least in monocytes of DS patients, may contribute to the autoimmune diseases observed in these individuals.


Assuntos
Síndrome de Down/genética , Síndrome de Down/metabolismo , Dosagem de Genes , Interferon Tipo I/metabolismo , Receptores de Interferon/genética , Adolescente , Adulto , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos B/patologia , Linfócitos B/virologia , Criança , Pré-Escolar , Mapeamento Cromossômico , Citocinas/metabolismo , Suscetibilidade a Doenças , Síndrome de Down/imunologia , Feminino , Perfilação da Expressão Gênica , Loci Gênicos , Predisposição Genética para Doença , Humanos , Interferon Tipo I/genética , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/metabolismo , Receptores de Interferon/metabolismo , Fator de Transcrição STAT1/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Transcriptoma , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...